\(\int \frac {1}{x^2 (a x+b x^3+c x^5)} \, dx\) [88]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 89 \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=-\frac {1}{2 a x^2}-\frac {\left (b^2-2 a c\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \sqrt {b^2-4 a c}}-\frac {b \log (x)}{a^2}+\frac {b \log \left (a+b x^2+c x^4\right )}{4 a^2} \]

[Out]

-1/2/a/x^2-b*ln(x)/a^2+1/4*b*ln(c*x^4+b*x^2+a)/a^2-1/2*(-2*a*c+b^2)*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/a^
2/(-4*a*c+b^2)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1599, 1128, 723, 814, 648, 632, 212, 642} \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=-\frac {\left (b^2-2 a c\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \sqrt {b^2-4 a c}}+\frac {b \log \left (a+b x^2+c x^4\right )}{4 a^2}-\frac {b \log (x)}{a^2}-\frac {1}{2 a x^2} \]

[In]

Int[1/(x^2*(a*x + b*x^3 + c*x^5)),x]

[Out]

-1/2*1/(a*x^2) - ((b^2 - 2*a*c)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*a^2*Sqrt[b^2 - 4*a*c]) - (b*Log[x
])/a^2 + (b*Log[a + b*x^2 + c*x^4])/(4*a^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 723

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*((d + e*x)^(m + 1)/((m
+ 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[(d + e*x)^(m + 1)*(Simp[c*d - b*e - c
*e*x, x]/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[m, -1]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1128

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{x^3 \left (a+b x^2+c x^4\right )} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {1}{x^2 \left (a+b x+c x^2\right )} \, dx,x,x^2\right ) \\ & = -\frac {1}{2 a x^2}+\frac {\text {Subst}\left (\int \frac {-b-c x}{x \left (a+b x+c x^2\right )} \, dx,x,x^2\right )}{2 a} \\ & = -\frac {1}{2 a x^2}+\frac {\text {Subst}\left (\int \left (-\frac {b}{a x}+\frac {b^2-a c+b c x}{a \left (a+b x+c x^2\right )}\right ) \, dx,x,x^2\right )}{2 a} \\ & = -\frac {1}{2 a x^2}-\frac {b \log (x)}{a^2}+\frac {\text {Subst}\left (\int \frac {b^2-a c+b c x}{a+b x+c x^2} \, dx,x,x^2\right )}{2 a^2} \\ & = -\frac {1}{2 a x^2}-\frac {b \log (x)}{a^2}+\frac {b \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 a^2}+\frac {\left (b^2-2 a c\right ) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 a^2} \\ & = -\frac {1}{2 a x^2}-\frac {b \log (x)}{a^2}+\frac {b \log \left (a+b x^2+c x^4\right )}{4 a^2}-\frac {\left (b^2-2 a c\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 a^2} \\ & = -\frac {1}{2 a x^2}-\frac {\left (b^2-2 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \sqrt {b^2-4 a c}}-\frac {b \log (x)}{a^2}+\frac {b \log \left (a+b x^2+c x^4\right )}{4 a^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.52 \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=\frac {-\frac {2 a}{x^2}-4 b \log (x)+\frac {\left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) \log \left (b-\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}+\frac {\left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}}{4 a^2} \]

[In]

Integrate[1/(x^2*(a*x + b*x^3 + c*x^5)),x]

[Out]

((-2*a)/x^2 - 4*b*Log[x] + ((b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*Log[b - Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2
 - 4*a*c] + ((-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*
a^2)

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.96

method result size
default \(-\frac {1}{2 a \,x^{2}}-\frac {b \ln \left (x \right )}{a^{2}}-\frac {-\frac {b \ln \left (c \,x^{4}+b \,x^{2}+a \right )}{2}+\frac {2 \left (a c -\frac {b^{2}}{2}\right ) \arctan \left (\frac {2 c \,x^{2}+b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{2 a^{2}}\) \(85\)
risch \(-\frac {1}{2 a \,x^{2}}-\frac {b \ln \left (x \right )}{a^{2}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (4 a^{3} c -a^{2} b^{2}\right ) \textit {\_Z}^{2}+\left (-4 a b c +b^{3}\right ) \textit {\_Z} +c^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (10 a^{3} c -3 a^{2} b^{2}\right ) \textit {\_R}^{2}-4 \textit {\_R} a b c +2 c^{2}\right ) x^{2}-a^{3} b \,\textit {\_R}^{2}+\left (c \,a^{2}-2 b^{2} a \right ) \textit {\_R} +2 b c \right )\right )}{2}\) \(124\)

[In]

int(1/x^2/(c*x^5+b*x^3+a*x),x,method=_RETURNVERBOSE)

[Out]

-1/2/a/x^2-b*ln(x)/a^2-1/2/a^2*(-1/2*b*ln(c*x^4+b*x^2+a)+2*(a*c-1/2*b^2)/(4*a*c-b^2)^(1/2)*arctan((2*c*x^2+b)/
(4*a*c-b^2)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 293, normalized size of antiderivative = 3.29 \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=\left [-\frac {{\left (b^{2} - 2 \, a c\right )} \sqrt {b^{2} - 4 \, a c} x^{2} \log \left (\frac {2 \, c^{2} x^{4} + 2 \, b c x^{2} + b^{2} - 2 \, a c + {\left (2 \, c x^{2} + b\right )} \sqrt {b^{2} - 4 \, a c}}{c x^{4} + b x^{2} + a}\right ) - {\left (b^{3} - 4 \, a b c\right )} x^{2} \log \left (c x^{4} + b x^{2} + a\right ) + 4 \, {\left (b^{3} - 4 \, a b c\right )} x^{2} \log \left (x\right ) + 2 \, a b^{2} - 8 \, a^{2} c}{4 \, {\left (a^{2} b^{2} - 4 \, a^{3} c\right )} x^{2}}, -\frac {2 \, {\left (b^{2} - 2 \, a c\right )} \sqrt {-b^{2} + 4 \, a c} x^{2} \arctan \left (-\frac {{\left (2 \, c x^{2} + b\right )} \sqrt {-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right ) - {\left (b^{3} - 4 \, a b c\right )} x^{2} \log \left (c x^{4} + b x^{2} + a\right ) + 4 \, {\left (b^{3} - 4 \, a b c\right )} x^{2} \log \left (x\right ) + 2 \, a b^{2} - 8 \, a^{2} c}{4 \, {\left (a^{2} b^{2} - 4 \, a^{3} c\right )} x^{2}}\right ] \]

[In]

integrate(1/x^2/(c*x^5+b*x^3+a*x),x, algorithm="fricas")

[Out]

[-1/4*((b^2 - 2*a*c)*sqrt(b^2 - 4*a*c)*x^2*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c + (2*c*x^2 + b)*sqrt(b^2 -
 4*a*c))/(c*x^4 + b*x^2 + a)) - (b^3 - 4*a*b*c)*x^2*log(c*x^4 + b*x^2 + a) + 4*(b^3 - 4*a*b*c)*x^2*log(x) + 2*
a*b^2 - 8*a^2*c)/((a^2*b^2 - 4*a^3*c)*x^2), -1/4*(2*(b^2 - 2*a*c)*sqrt(-b^2 + 4*a*c)*x^2*arctan(-(2*c*x^2 + b)
*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)) - (b^3 - 4*a*b*c)*x^2*log(c*x^4 + b*x^2 + a) + 4*(b^3 - 4*a*b*c)*x^2*log(x)
 + 2*a*b^2 - 8*a^2*c)/((a^2*b^2 - 4*a^3*c)*x^2)]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=\text {Timed out} \]

[In]

integrate(1/x**2/(c*x**5+b*x**3+a*x),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=\int { \frac {1}{{\left (c x^{5} + b x^{3} + a x\right )} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(c*x^5+b*x^3+a*x),x, algorithm="maxima")

[Out]

-b*log(x)/a^2 + integrate((b*c*x^3 + (b^2 - a*c)*x)/(c*x^4 + b*x^2 + a), x)/a^2 - 1/2/(a*x^2)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.06 \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=\frac {b \log \left (c x^{4} + b x^{2} + a\right )}{4 \, a^{2}} - \frac {b \log \left (x^{2}\right )}{2 \, a^{2}} + \frac {{\left (b^{2} - 2 \, a c\right )} \arctan \left (\frac {2 \, c x^{2} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{2 \, \sqrt {-b^{2} + 4 \, a c} a^{2}} + \frac {b x^{2} - a}{2 \, a^{2} x^{2}} \]

[In]

integrate(1/x^2/(c*x^5+b*x^3+a*x),x, algorithm="giac")

[Out]

1/4*b*log(c*x^4 + b*x^2 + a)/a^2 - 1/2*b*log(x^2)/a^2 + 1/2*(b^2 - 2*a*c)*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a
*c))/(sqrt(-b^2 + 4*a*c)*a^2) + 1/2*(b*x^2 - a)/(a^2*x^2)

Mupad [B] (verification not implemented)

Time = 9.57 (sec) , antiderivative size = 2033, normalized size of antiderivative = 22.84 \[ \int \frac {1}{x^2 \left (a x+b x^3+c x^5\right )} \, dx=\text {Too large to display} \]

[In]

int(1/(x^2*(a*x + b*x^3 + c*x^5)),x)

[Out]

(atan((16*a^6*x^2*(((3*b^4 + a^2*c^2 - 9*a*b^2*c)*(c^5/a^3 + ((2*b^3 - 8*a*b*c)*((6*b*c^4)/a^2 + ((2*b^3 - 8*a
*b*c)*((20*a^3*c^4 + 2*a^2*b^2*c^3)/a^3 + ((2*b^3 - 8*a*b*c)*(40*a^4*b*c^3 - 12*a^3*b^3*c^2))/(2*a^3*(16*a^3*c
 - 4*a^2*b^2))))/(2*(16*a^3*c - 4*a^2*b^2))))/(2*(16*a^3*c - 4*a^2*b^2)) - ((((2*a*c - b^2)*((20*a^3*c^4 + 2*a
^2*b^2*c^3)/a^3 + ((2*b^3 - 8*a*b*c)*(40*a^4*b*c^3 - 12*a^3*b^3*c^2))/(2*a^3*(16*a^3*c - 4*a^2*b^2))))/(4*a^2*
(4*a*c - b^2)^(1/2)) + ((2*b^3 - 8*a*b*c)*(40*a^4*b*c^3 - 12*a^3*b^3*c^2)*(2*a*c - b^2))/(8*a^5*(4*a*c - b^2)^
(1/2)*(16*a^3*c - 4*a^2*b^2)))*(2*a*c - b^2))/(4*a^2*(4*a*c - b^2)^(1/2)) - ((2*b^3 - 8*a*b*c)*(40*a^4*b*c^3 -
 12*a^3*b^3*c^2)*(2*a*c - b^2)^2)/(32*a^7*(4*a*c - b^2)*(16*a^3*c - 4*a^2*b^2))))/(8*a^3*c^2*(a^2*c^2 - 6*b^4
+ 24*a*b^2*c)) + ((((2*b^3 - 8*a*b*c)*(((2*a*c - b^2)*((20*a^3*c^4 + 2*a^2*b^2*c^3)/a^3 + ((2*b^3 - 8*a*b*c)*(
40*a^4*b*c^3 - 12*a^3*b^3*c^2))/(2*a^3*(16*a^3*c - 4*a^2*b^2))))/(4*a^2*(4*a*c - b^2)^(1/2)) + ((2*b^3 - 8*a*b
*c)*(40*a^4*b*c^3 - 12*a^3*b^3*c^2)*(2*a*c - b^2))/(8*a^5*(4*a*c - b^2)^(1/2)*(16*a^3*c - 4*a^2*b^2))))/(2*(16
*a^3*c - 4*a^2*b^2)) - ((40*a^4*b*c^3 - 12*a^3*b^3*c^2)*(2*a*c - b^2)^3)/(64*a^9*(4*a*c - b^2)^(3/2)) + (((6*b
*c^4)/a^2 + ((2*b^3 - 8*a*b*c)*((20*a^3*c^4 + 2*a^2*b^2*c^3)/a^3 + ((2*b^3 - 8*a*b*c)*(40*a^4*b*c^3 - 12*a^3*b
^3*c^2))/(2*a^3*(16*a^3*c - 4*a^2*b^2))))/(2*(16*a^3*c - 4*a^2*b^2)))*(2*a*c - b^2))/(4*a^2*(4*a*c - b^2)^(1/2
)))*(3*b^5 + 13*a^2*b*c^2 - 15*a*b^3*c))/(8*a^3*c^2*(4*a*c - b^2)^(1/2)*(a^2*c^2 - 6*b^4 + 24*a*b^2*c)))*(4*a*
c - b^2)^(3/2))/(4*a^2*c^4 + b^4*c^2 - 4*a*b^2*c^3) - (2*a^3*(4*a*c - b^2)*(3*b^5 + 13*a^2*b*c^2 - 15*a*b^3*c)
*(((2*b^3 - 8*a*b*c)*((((4*a^3*b*c^3 - 4*a^2*b^3*c^2)/a^3 + (2*a*b^2*c^2*(2*b^3 - 8*a*b*c))/(16*a^3*c - 4*a^2*
b^2))*(2*a*c - b^2))/(4*a^2*(4*a*c - b^2)^(1/2)) + (b^2*c^2*(2*b^3 - 8*a*b*c)*(2*a*c - b^2))/(2*a*(4*a*c - b^2
)^(1/2)*(16*a^3*c - 4*a^2*b^2))))/(2*(16*a^3*c - 4*a^2*b^2)) + ((2*a*c - b^2)*((a^2*c^4 - 4*a*b^2*c^3)/a^3 + (
(2*b^3 - 8*a*b*c)*((4*a^3*b*c^3 - 4*a^2*b^3*c^2)/a^3 + (2*a*b^2*c^2*(2*b^3 - 8*a*b*c))/(16*a^3*c - 4*a^2*b^2))
)/(2*(16*a^3*c - 4*a^2*b^2))))/(4*a^2*(4*a*c - b^2)^(1/2)) - (b^2*c^2*(2*a*c - b^2)^3)/(16*a^5*(4*a*c - b^2)^(
3/2))))/(c^2*(a^2*c^2 - 6*b^4 + 24*a*b^2*c)*(4*a^2*c^4 + b^4*c^2 - 4*a*b^2*c^3)) + (2*a^3*(4*a*c - b^2)^(3/2)*
(3*b^4 + a^2*c^2 - 9*a*b^2*c)*((b*c^4)/a^3 - ((2*b^3 - 8*a*b*c)*((a^2*c^4 - 4*a*b^2*c^3)/a^3 + ((2*b^3 - 8*a*b
*c)*((4*a^3*b*c^3 - 4*a^2*b^3*c^2)/a^3 + (2*a*b^2*c^2*(2*b^3 - 8*a*b*c))/(16*a^3*c - 4*a^2*b^2)))/(2*(16*a^3*c
 - 4*a^2*b^2))))/(2*(16*a^3*c - 4*a^2*b^2)) + ((2*a*c - b^2)*((((4*a^3*b*c^3 - 4*a^2*b^3*c^2)/a^3 + (2*a*b^2*c
^2*(2*b^3 - 8*a*b*c))/(16*a^3*c - 4*a^2*b^2))*(2*a*c - b^2))/(4*a^2*(4*a*c - b^2)^(1/2)) + (b^2*c^2*(2*b^3 - 8
*a*b*c)*(2*a*c - b^2))/(2*a*(4*a*c - b^2)^(1/2)*(16*a^3*c - 4*a^2*b^2))))/(4*a^2*(4*a*c - b^2)^(1/2)) + (b^2*c
^2*(2*b^3 - 8*a*b*c)*(2*a*c - b^2)^2)/(8*a^3*(4*a*c - b^2)*(16*a^3*c - 4*a^2*b^2))))/(c^2*(a^2*c^2 - 6*b^4 + 2
4*a*b^2*c)*(4*a^2*c^4 + b^4*c^2 - 4*a*b^2*c^3)))*(2*a*c - b^2))/(2*a^2*(4*a*c - b^2)^(1/2)) - (b*log(x))/a^2 -
 (log(a + b*x^2 + c*x^4)*(2*b^3 - 8*a*b*c))/(2*(16*a^3*c - 4*a^2*b^2)) - 1/(2*a*x^2)